La troisième loi de Kepler fut publiée en 1618.
Le carré de la période sidérale T d'un objet (temps entre deux passages successifs devant une étoile lointaine) est directement proportionnel au cube du demi-grand axe a de la trajectoire elliptique de l'objet.
Il existe donc un rapport entre la distance de l'orbite et la période de révolution et ce rapport est constant.
où :
Les lois de la gravitation universelle énoncées par Isaac Newton permettent de déterminer cette constante
où :
On en déduit donc une forme newtonienne mélangeant la mécanique classique et la troisième loi de Kepler :
En appliquant une partie de cette troisième loi, il est possible d'estimer directement et rapidement la distance moyenne d'une planète quelconque du système solaire par rapport au soleil. En effet, Johann Lambert (1728 - 1777) montra que la connaissance de trois positions datées permettait de retrouver les paramètres du mouvement.
N'aurait on pas dû trouver la troisième loi sous une forme simplifié quand on croyait les orbites circulaires ?
Bonjour Quelles sont les unités de la formule newtonienne? A cette époque comment ont été déterminées les valeurs de G,M et a? Merci d'avance et bravo pour votre travail Jean BELASTRO
Le système solaire par Christophe.
Par le même auteur : Le Franc Français - Les timbres de France de 1849 à nos jours.
Dernière mise à jour : 10 Décembre 2023